Abstract
For direct phasing of protein crystals, a method based on the hybrid-input-output (HIO) algorithm has been proposed and tested on a variety of structures. So far, however, the diffraction data have been limited to high-resolution ones, i.e., higher than 2 Å. In principle, the methodology can be applied to data of lower resolutions, which might be particularly useful for phasing membrane protein crystals. For resolutions higher than 3.5 Å, it seems the atomic structure is solvable. For data of lower resolutions, information of the secondary structures and the protein boundary can still be obtained. Examples are given to support the conclusions. Real experimental data are used. Two aspects of the observed data have been discussed: removal of the measured low-resolution reflections and involvement of the unmeasured high-resolution reflections. The ab initio phasing employs histogram matching for density modification. A question arises whether the reference histogram used should match the resolution of the diffraction data or not. It seems that there is an optimal histogram which is good to use for data at various resolutions.
Funder
Robert A. Welch Foundation
Texas Center for Superconductivity
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献