Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms

Author:

Baquerizo JosephORCID,Tutivén ChristianORCID,Puruncajas BryanORCID,Vidal YolandaORCID,Sampietro JoséORCID

Abstract

Offshore wind energy is increasingly being realized at deeper ocean depths where jacket foundations are now the greatest choice for dealing with the hostile environment. The structural stability of these undersea constructions is critical. This paper states a methodology to detect and classify damage in a jacket-type support structure for offshore wind turbines. Because of the existence of unknown external disturbances (wind and waves), standard structural health monitoring technologies, such as guided waves, cannot be used directly in this application. Therefore, using vibration-response-only accelerometer measurements, a methodology based on two in-cascade Siamese convolutional neural networks is proposed. The first Siamese network detects the damage (discerns whether the structure is healthy or damaged). Then, in case damage is detected, a second Siamese network determines the damage diagnosis (classifies the type of damage). The main results and claims of the proposed methodology are the following ones: (i) It is solely dependent on accelerometer sensor output vibration data, (ii) it detects damage and classifies the type of damage, (iii) it operates in all wind turbine regions of operation, (iv) it requires less data to train since it is built on Siamese convolutional neural networks, which can learn from very little data compared to standard machine/deep learning algorithms, (v) it is validated in a scaled-down experimental laboratory setup, and (vi) its feasibility is demonstrated as all computed metrics (accuracy, precision, recall, and F1 score) for the obtained results remain above 96%.

Funder

Ministry of the Interior

Government of Catalonia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3