Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks

Author:

Voulgaropoulou Sophia,Samaras NikolaosORCID,Ploskas NikolaosORCID

Abstract

Selection of the most efficient algorithm for a given set of linear programming problems has been a significant and, at the same time, challenging process for linear programming solvers. The most widely used linear programming algorithms are the primal simplex algorithm, the dual simplex algorithm, and the interior point method. Interested in algorithm selection processes in modern mathematical solvers, we had previously worked on using artificial neural networks to formulate and propose a regression model for the prediction of the execution time of the interior point method on a set of benchmark linear programming problems. Extending our previous work, we are now examining a prediction model using artificial neural networks for the performance of CPLEX’s primal and dual simplex algorithms. Our study shows that, for the examined set of benchmark linear programming problems, a regression model that can accurately predict the execution time of these algorithms could not be formed. Therefore, we are proceeding further with our analysis, treating the problem as a classification one. Instead of attempting to predict exact values for the execution time of primal and dual simplex algorithms, our models estimate classes, expressed as time ranges, under which the execution time of each algorithm is expected to fall. Experimental results show a good performance of the classification models for both primal and dual methods, with the relevant accuracy score reaching 0.83 and 0.84, respectively.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference64 articles.

1. Introduction to Linear Optimization;Bertsimas,1997

2. Linear Programming Using MATLAB;Ploskas,2017

3. Programming in linear structure;Dantzig;Econometrica,1949

4. Linear Programming and Extensions;Dantzig,1963

5. Guest Editors Introduction to the top 10 algorithms

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3