Complex Modified Projective Difference Function Synchronization of Coupled Complex Chaotic Systems for Secure Communication in WSNs

Author:

Zhang FangfangORCID,Gao Rui,Huang ZheORCID,Jiang Cuimei,Chen Yawen,Zhang Haibo

Abstract

Complex-variable chaotic systems (CVCSs) have numerous advantages over real-variable chaotic systems in chaos communication due to their increased unpredictability, confidentiality, and the ease of implementation. Synchronization between the master and slave systems in CVCSs is key to achieving encryption and decryption. However, existing synchronization schemes for CVCSs require the amplitude of the chaotic signal to be much larger than that of the plaintext. Moreover, traditional chaotic masking of complete synchronization (CS) requires uniformity between the transmitter and receiver ends. Therefore, we propose a complex modified projective difference function synchronization (CMPDFS) of CVCSs to address these issues, where the modified projective matrix helps address the issues with the amplitude. The receiver end is reconstructed without uniformity of the transmitter. We design the CMPDFS controller and propose a new secure communication scheme for wireless sensor networks (WSNs). The basic principle is fundamentally different from traditional chaotic masking. Simulation results and security analysis demonstrate that the CMPDFS communication scheme has a large key space, high sensitivity to encryption keys, high security, and an acceptable encryption speed. Hence, the proposed scheme can improve the security of WSNs. Moreover, it also can be applied to similar communication systems.

Funder

National Natural Science Foundation of China

the International Collaborative Research Project of Qilu University of Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3