ACTIVE CONTROL AND GLOBAL SYNCHRONIZATION OF THE COMPLEX CHEN AND LÜ SYSTEMS

Author:

MAHMOUD GAMAL M.1,BOUNTIS TASSOS2,MAHMOUD EMAD E.3

Affiliation:

1. Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

2. Department of Mathematics and Center for Research and Applications for Nonlinear Systems, University of Patras, Patras GR 26500, Greece

3. Department of Mathematics, Faculty of Science, Sohag University, Egypt

Abstract

Chaos synchronization is a very important nonlinear phenomenon, which has been studied to date extensively on dynamical systems described by real variables. There also exist, however, interesting cases of dynamical systems, where the main variables participating in the dynamics are complex, for example, when amplitudes of electromagnetic fields are involved. Another example is when chaos synchronization is used for communications, where doubling the number of variables may be used to increase the content and security of the transmitted information. It is also well-known that similar generalization of the Lorenz system to one with complex ODEs has been introduced to describe and simulate the physics of a detuned laser and thermal convection of liquid flows. In this paper, we study chaos synchronization by applying active control and Lyapunov function analysis to two such systems introduced by Chen and Lü. First we show that, written in terms of complex variables, these systems can have chaotic dynamics and exhibit strange attractors. We calculate numerically the values of the parameters at which these attractors exist. Active control and global synchronization techniques are then applied to study the phenomenon of chaos synchronization. Analytical criteria concerning the stability of these techniques are implemented and excellent agreement is found upon comparison with numerical experiments. In particular, studying the time evolution of "errors" (or differences between drive and control dynamics), we show that both techniques are very effective for controlling the behavior of these systems, even in regimes of very strong chaos.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3