Increasing the Thermal Stability and High-Temperature Strength of Vanadium Alloys by Strengthening with Nanosized Non-Metallic Particles

Author:

Ditenberg Ivan A.1,Smirnov Ivan V.1,Grinyaev Konstantin V.1,Tyumentsev Alexander N.1,Chernov Vyacheslav M.2,Potapenko Mikhail M.2,Kulinich Sergei A.3ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science, The Siberian Branch of the Russian Academy of Sciences, Tomsk 634055, Russia

2. JSC Bochvar High-Technology Research Institute for Inorganic Materials, Moscow 123098, Russia

3. Research Institute of Science and Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan

Abstract

Using the methods of scanning and transmission electron microscopy, the features of the structural-phase state of a vanadium alloy of the V–Cr–Ta–Zr system after a combined treatment, which consisted in cyclic alternation of thermomechanical and chemical-heat treatments, were studied. The values of yield strength and ductility of the V–Cr–Ta–Zr alloy were determined, depending on the stabilization and test temperatures. It was established that, after the combined treatment, the structural-phase state of the V–Cr–Ta–Zr alloy was composite, in which the joint implementation of dispersion and substructural strengthening ensured the formation of a gradient grain structure with a polygonal state, the elements of which were fixed by nanosized ZrO2 particles characterized by a high thermal stability. Such modification of the microstructure was accompanied by an increase in the high-temperature strength and a shift in the upper limit of the temperature stability interval towards high temperatures, of up to 900 °C. It was assumed that the polygonal state inside the grains contributed to the implementation of cooperative mechanisms of the dislocation–disclination type, which ensured the accommodation of the material in the “high-strength state” under loading.

Funder

ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3