Mode Choice Change under Environmental Constraints in the Combined Modal Split and Traffic Assignment Model

Author:

Ryu SeungkyuORCID

Abstract

With the increasing level of air pollution and fine dust, many countries are trying to prevent further environmental damage, with various government legislations, such as the Kyoto Protocol and the Paris Agreement. In the transportation field, a variety of environmental protection schemes are also being considered (e.g., banning old diesel vehicles, alternate no-driving systems, electric car subsidies, and environmental cost charging by tax). Imposing environmental constraints is a good approach to reflect various environmental protections. The objective of this research was to analyze the mode-choice and route-choice changes based on imposing environmental constraints. For the objective, a combined modal split and traffic assignment (CMA) model with an environmental constraint model was developed. For the environmental constraint, carbon monoxide (CO) was adopted, because most of the CO emissions in the air are emitted by motorized vehicles. After a detailed description of the model, the validity and some properties of the model and algorithm are demonstrated with two numerical examples (e.g., a small and a real network in the city of Winnipeg, Canada). From the numerical results, we can observe that imposing the small restriction (or strict) value has more efficiency in mode change and reducing network emission.

Funder

the Basic Science Research Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3