Anomaly Detection via Progressive Reconstruction and Hierarchical Feature Fusion

Author:

Liu Fei1ORCID,Zhu Xiaoming1ORCID,Feng Pingfa1,Zeng Long1ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

The main challenges in reconstruction-based anomaly detection include the breakdown of the generalization gap due to improved fitting capabilities and the overfitting problem arising from simulated defects. To overcome this, we propose a new method called PRFF-AD, which utilizes progressive reconstruction and hierarchical feature fusion. It consists of a reconstructive sub-network and a discriminative sub-network. The former achieves anomaly-free reconstruction while maintaining nominal patterns, and the latter locates defects based on pre- and post-reconstruction information. Given defective samples, we find that adopting a progressive reconstruction approach leads to higher-quality reconstructions without compromising the assumption of a generalization gap. Meanwhile, to alleviate the network’s overfitting of synthetic defects and address the issue of reconstruction errors, we fuse hierarchical features as guidance for discriminating defects. Moreover, with the help of an attention mechanism, the network achieves higher classification and localization accuracy. In addition, we construct a large dataset for packaging chips, named GTanoIC, with 1750 real non-defective samples and 470 real defective samples, and we provide their pixel-level annotations. Evaluation results demonstrate that our method outperforms other reconstruction-based methods on two challenging datasets: MVTec AD and GTanoIC.

Funder

University Key Projects stability fund

Technical Breakthrough projects

Shenzhen Grand Technology Corporation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3