Image Segmentation of Fiducial Marks with Complex Backgrounds Based on the mARU-Net

Author:

Zhang Xuewei12,Wang Jichun1,Wang Yang1ORCID,Feng Yanwu1,Tang Shufeng2ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China

2. Inner Mongolia Autonomous Region Special Service Intelligent Robot Key Laboratory, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

Circuits on different layers in a printed circuit board (PCB) must be aligned according to high-precision fiducial mark images during exposure processing. However, processing quality depends on the detection accuracy of fiducial marks. Precise segmentation of fiducial marks from images can significantly improve detection accuracy. Due to the complex background of PCB images, there are significant challenges in the segmentation and detection of fiducial mark images. In this paper, the mARU-Net is proposed for the image segmentation of fiducial marks with complex backgrounds to improve detection accuracy. Compared with some typical segmentation methods in customized datasets of fiducial marks, the mARU-Net demonstrates good segmentation accuracy. Experimental research shows that, compared with the original U-Net, the segmentation accuracy of the mARU-Net is improved by 3.015%, while the number of parameters and training times are not increased significantly. Furthermore, the centroid method is used to detect circles in segmentation results, and the deviation is kept within 30 microns, with higher detection efficiency. The detection accuracy of fiducial mark images meets the accuracy requirements of PCB production.

Funder

Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region

Key Research Projects of Military-Civilian Integration of Inner Mongolia Autonomous Region

Key Technology Research Program of Inner Mongolia

The Natural Science Foundation of Inner Mongolia

The Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region

The Fundamental Research Funds for the Directly affiliated Universities of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3