Abstract
In this study, the extraction efficiency of natural deep eutectic solvents (NADES) based on choline chloride as a hydrogen bond acceptor (HBA) and five different hydrogen bond donors (HBD; lactic acid, 1,4-butanediol, 1,2-propanediol, fructose and urea) was evaluated for the first time for the isolation of valuable bioactive compounds from Achillea millefolium L. The phytochemical profiles of NADES extracts obtained after ultrasound-assisted extraction were evaluated both spectrophotometrically (total phenolic content (TPC) and antioxidant assays) and chromatographically (UHPLC-MS and HPLC-UV). The results were compared with those obtained with 80% ethanol, 80% methanol, and water. The highest TPC value was found in the lactic acid-based NADES (ChCl-LA), which correlated with the highest antioxidant activity determined by the FRAP analysis. On the other hand, the highest antiradical potential against ABTS+• was determined for urea-based NADES. Phenolic acids (chlorogenic acid and dicaffeoylquinic acid isomers), flavones (luteolin and apigenin), and their corresponding glucosides were determined as the dominant individual phenolic compounds in all extracts. The antibacterial and antifungal properties of the extracts obtained against four bacterial cultures and two yeasts were evaluated using two methods: the agar dilution method to obtain the minimum inhibitory concentration (MIC) and the minimum bactericidal or fungicidal concentration (MBC or MFC), and the disc diffusion method. ChCl-LA had the lowest MIC and MBC/MFC with respect to all microorganisms, with an MIC ranging from 0.05 mg mL−1 to 0.8 mg mL−1, while the water extract had the weakest inhibitory activity with MIC and MBC/MFC higher than 3.2 mg mL−1.
Funder
Slovenian Research Agency
Ministry of Scientific and Technological Develpoment, Higher Education and Information Society of the Republika Srpska
Ministry of Education, Science and Sport
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献