Abstract
The aim of this study was to analyze the physiological activity of 48 soybean resources harvested in 2020 to identify the soybean resources’ relationships with individual isoflavone compounds and their genetic properties. These data will subsequently be compared with the research results on soybeans harvested in 2019. Initially, with respect to the physiological activity (6 types) and substances (19 types), this study evaluated the differences between the cultivation year (two years), seed coat color (three colors), and the interaction of the year and seed coat color of soybeans through ANOVA. Among the physiological activities, there were differences in the estrogen, estrogen receptor alpha, and UCP-1 (uncoupling protein-1) activities depending on the cultivation year. Moreover, there were differences in NO (nitric oxide), revealing differences in the ABTS (2, 2′-azino-bis-3ethylbenzo-thiazoline-6-sulfonic acid) and DPPH (2, 2-diphenyl-2-picrylhydrazyl) radical scavenging activities due to the seed coat color and the interaction of the year and seed coat color. Soybeans harvested in 2020 exhibited increased ABTS, DPPH, and NO inhibitory activities and reduced estrogen, estrogen receptor alpha, and UCP-1 activities compared to those harvested in 2019. According to the ANOVA results, eight of the nineteen individual derivatives illustrated yearly differences, while three derivatives displayed differences due to the seed coat color. Secondly, according to the relationship between the efficacy, derivative substances, and genetic properties, it was determined that genistein 7-O-(2″-O-apiosyl)glucoside (F5) is the individual isoflavone derivative that affected the six types of physiological activity, on which the genome-wide association study (GWAS) showed no significant differences for genetic properties. These results were inconsistent with the 2019 data, where three types of individual compounds, including F5, were proposed as substances that correlated with efficacy and there was a high correlation with genetic properties. Therefore, this study selected B17, B23, B15, B24, and Y7 as excellent varieties that are stable and highly functional in the cultivation environment, producing only small annual differences. The results of this study will be utilized as basic data for predicting soybean varieties and their cultivation, which have high environmental stability under climate variation and properly retain the functional substances and efficacy.
Funder
The Cooperative Research Program for Agriculture Science and Technology Development
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献