Effect of Low-Dose Radiotherapy on the Circulating Levels of Paraoxonase-1-Related Variables and Markers of Inflammation in Patients with COVID-19 Pneumonia

Author:

Rodríguez-Tomàs Elisabet,Acosta Johana C.,Torres-Royo Laura,De Febrer Gabriel,Baiges-Gaya Gerard,Castañé Helena,Jiménez AndreaORCID,Vasco Carlos,Araguas Pablo,Gómez Junior,Malave Bárbara,Árquez Miguel,Calderón David,Piqué Berta,Algara Manel,Montero Ángel,Simó Josep M.ORCID,Gabaldó-Barrios XavierORCID,Sabater Sebastià,Camps JordiORCID,Joven JorgeORCID,Arenas MeritxellORCID

Abstract

The aim of our study was to investigate the changes produced by low-dose radiotherapy (LDRT) in the circulating levels of the antioxidant enzyme paraoxonase-1 (PON1) and inflammatory markers in patients with COVID-19 pneumonia treated with LDRT and their interactions with clinical and radiological changes. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 30 patients treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as PON1-related variables, cytokines, and radiological parameters were analyzed before LDRT, at 24 h, and 1 week after treatment. Twenty-five patients (83.3%) survived 1 week after LDRT. Respiratory function and radiological images improved in survivors. Twenty-four hours after LDRT, PON1 concentration significantly decreased, while transforming growth factor beta 1 (TGF-β1) increased with respect to baseline. One week after LDRT, patients had increased PON1 activities and lower PON1 and TGF-β1 concentrations compared with 24 h after LDRT, PON1 specific activity increased, lactate dehydrogenase (LDH), and C-reactive protein (CRP) decreased, and CD4+ and CD8+ cells increased after one week. Our results highlight the benefit of LDRT in patients with COVID-19 pneumonia and it might be mediated, at least in part, by an increase in serum PON1 activity at one week and an increase in TGF-β1 concentrations at 24 h.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3