Fucoxanthin’s Optimization from Undaria pinnatifida Using Conventional Heat Extraction, Bioactivity Assays and In Silico Studies

Author:

Lourenço-Lopes CatarinaORCID,Fraga-Corral MariaORCID,Soria-Lopez Anton,Nuñes-Estevez Bernabe,Barral-Martinez MartaORCID,Silva AuroraORCID,Li NingyangORCID,Liu Chao,Simal-Gandara JesusORCID,Prieto Miguel A.ORCID

Abstract

Brown macroalgae are a potential source of natural pigments. Among them, Undaria pinnatifida is recognized for its high concentration of fucoxanthin (Fx), which is a pigment with a wide range of bioactivities. In this study, three independent parameters were optimized for conventional heat extraction (CHE) to maximize the recovery of Fx from Undaria pinnatifida. Optimal conditions (temperature = 45 °C, solvent = 70%, and time = 61 min) extracted 5.1 mg Fx/g dw. Later, the bioactivities of the Fx-rich extracts (antioxidant, antimicrobial, and neuroprotective) were assessed using in vitro and in silico approaches. In vitro assays indicated that Fx has a strong antioxidant capacity and even stronger antimicrobial activity against gram-positive bacteria. This data was supported in silico where Fx established a high binding affinity to DR, a Staphylococcus aureus protein, through aa ALA-8, LEU-21, and other alkane interactions. Finally, the in vitro enzymatic inhibition of AChE using Fx, was further supported using docking models that displayed Fx as having a high affinity for aa TYR72 and THR 75; therefore, the Fx extraction behavior explored in this work may reduce the costs associated with energy and solvent consumption. Moreover, this paper demonstrates the efficiency of CHE when recovering high amounts of Fx from Undaria pinnatifida. Furthermore, these findings can be applied in different industries.

Funder

Bio Based Industries Joint Undertaking

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3