Animal Biomonitoring for the Surveillance of Environment Affected by the Presence of Slight Contamination by β-HCH

Author:

Bocedi Alessio,Lai Olga,Cattani Giada,Roncoroni CristinaORCID,Gambardella Giorgia,Notari Sara,Tancredi Francesco,Bitonti Giuseppe,Calabrò SerenaORCID,Ricci Giorgio

Abstract

The aim of this study was to evaluate the influence of hidden environmental pollution on some blood parameters of sheep to detect susceptible biomarkers able to reveal slight contamination. Four dairy sheep farms, two with semi-extensive and two with intensive type systems were involved in this study. Two farms in different systems were chosen as properly located in a southern area of Latium (Italy), close to the Sacco River, in which contamination with β-hexachlorocyclohexane (β-HCH) occurred in the past due to industrial waste. A recent study established the presence of low but detectable residual contamination in these areas. The other two farms were outside the contaminated area. Erythrocyte glutathione transferase (e-GST) and oxidative stress parameters were monitored as well as some immune response and metabolic profile parameters throughout the investigated period of four months. The present study showed a relevant and significant increase in e-GST (+63%) in the extensive farming system of the contaminated area, whereas some immune response biomarkers, i.e., white blood cells, neutrophils, lymphocytes, and lysozyme resulted within the physiological range. In all farms, oxidative stress and acute phase response parameters were also within the physiological range. Our results suggest that e-GST is a very effective alarm signal to reveal “hidden” persistent contamination by β-HCH, and reasonably, by many other different dangerous pollutants.

Funder

Italian Department of Health

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3