Efficient 2-Step Enzymatic Cascade for the Bioconversion of Oleuropein into Hydroxytyrosol

Author:

Catinella GiorgiaORCID,Donzella SilviaORCID,Borgonovo Gigliola,Dallavalle SabrinaORCID,Contente Martina LetiziaORCID,Pinto AndreaORCID

Abstract

Among the plant bioactive components, oleuropein (OLE) is the most abundant phenolic compound in all parts of olive trees (Olea europaea L.), particularly concentrated in olive leaves. It has been shown to present various remarkable biological actions, such as antimicrobial, antioxidant, anticancer and anti-inflammatory ones. On the other hand, hydroxytyrosol (HT), the main degradation product of OLE, is considered one of the most powerful antioxidant agents, with higher beneficial properties than the OLE parent compound. In this work, oleuropein was efficiently transformed into hydroxytyrosol using a 2-step biotransformation involving a thermo-halophilic β-glucosidase from Alicyclobacillus herbarius (Ahe), which gave the corresponding aglycone with complete conversion (>99%) and rapid reaction times (30 min), and an acyltransferase from Mycobacterium smegmatis (MsAcT), here employed for the first time for its hydrolytic activity. After cascade completion, hydroxytyrosol was obtained in excellent yield (>99% m.c., 96% isolated yield) in 24 h. Starting from a natural substrate and employing enzymatic approaches, the final hydroxytyrosol can be claimed and commercialized as natural too, thus increasing its market value.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3