The Assessment of Dietary Organic Zinc on Zinc Homeostasis, Antioxidant Capacity, Immune Response, Glycolysis and Intestinal Microbiota in White Shrimp (Litopenaeus vannamei Boone, 1931)

Author:

Yang JinzhuORCID,Wang Tiantian,Lin GangORCID,Li Mingzhu,Zhang Yanjiao,Mai Kangsen

Abstract

This study aimed to assess dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Six experimental diets were formulated: Control, zinc free; S120, 120 mg·kg−1 zinc from ZnSO4·7H2O added into control diet; O30, O60, O90 and O120, 30, 60, 90 and 120 mg·kg−1 zinc from Zn-proteinate added into control diet, respectively. The results showed that organic zinc significantly promoted zinc content and gene expression of ZnT1, ZIP11 and MT in the hepatopancreas and enhanced antioxidant capacity and immunity (in terms of increased activities of T-SOD, Cu/Zn SOD, PO, LZM, decreased content of MDA, upregulated expressions of GST, G6PDH, ProPO, LZM and Hemo, and increased resistance to Vibrio parahaemolyticus). Organic zinc significantly upregulated GluT1 expression in the intestine, increased glucose content of plasma and GCK, PFK and PDH activities of hepatopancreas, and decreased pyruvate content of hepatopancreas. Organic zinc improved intestinal microbiota communities, increased the abundance of potentially beneficial bacteria and decreased the abundance of potential pathogens. Inorganic zinc (S120) also had positive effects, but organic zinc (as low as O60) could achieve better effects. Overall, organic zinc had a higher bioavailability and was a more beneficial zinc resource than inorganic zinc in shrimp feeds.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

China Agriculture Researches 536 System

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3