Resveratrol Butyrate Ester Protects Adenine-Treated Rats against Hypertension and Kidney Disease by Regulating the Gut–Kidney Axis

Author:

Hsu Chien-NingORCID,Hou Chih-YaoORCID,Chang Chi-I,Tain You-LinORCID

Abstract

Despite recent advances in pharma-nutritional management, chronic kidney disease (CKD) remains an increasingly prevalent disorder. Resveratrol, a pleiotropic phytochemical, has been found to reduce the risk for several chronic diseases. Considering the low bioavailability of resveratrol, we recently synthesized resveratrol butyrate ester (RBE) via the esterification of resveratrol with butyrate. The aim of this study was to examine the effectiveness of RBE as regards protection from hypertension and kidney damage and explore the underlying mechanisms using a young rat adenine-induced CKD model. Three-week-old male Sprague Dawley rats received regular or 0.5% adenine chow for three weeks. Three groups of adenine-fed CKD rats (N = 8/group) received resveratrol (50 mg/L), or a low dose (25 mg/L) or high dose (50 mg/L) of RBE in drinking water from week 6 to week 12. As compared with the controls, adenine-treated rats had markedly increased creatinine levels and blood pressure, which was associated with renal hypertrophy and decreased creatinine clearance. Treatment with resveratrol or a low or high dose of RBE, similarly protected adenine-fed rats against hypertension and kidney damage. CKD-induced hypertension is associated with an altered gut microbiota profile, dysregulated renal short chain fatty acid (SCFA) receptor expression, activation of the aryl hydrocarbon receptor (AhR) signaling pathway, and reduced nitric oxide bioavailability. We found gut microbiota compositions were shaped differentially by resveratrol and RBE treatment in adenine-treated CKD rats. The beneficial effect of high-dose RBE was associated with reduced renal expression of SCFA G protein-coupled receptor 41 (GPR41) and olfactory receptor 78 (Olfr78), antagonizing the AhR signaling pathway, and increased abundance of beneficial bacteria such as genera Akkermansia, Blautia, and Enterococcus. Our study provided the first evidence documenting RBE as a novel phytochemical supplement targeting the gut–kidney axis to protect against adenine-induced kidney damage and hypertension.

Funder

Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan and National Pingtung University of Science and Technology, Pingtung, Taiwan.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3