Integration of Discrete Simulation, Prediction, and Optimization Methods for a Production Line Digital Twin Design

Author:

Krenczyk Damian1ORCID,Paprocka Iwona1ORCID

Affiliation:

1. Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18A Str., 44-100 Gliwice, Poland

Abstract

The integration of discrete simulations, artificial intelligence methods, and the theory of probability in order to obtain a high flexibility of the production system is crucial. In this paper, the concept of a smart factory operation is proposed along with the idea of data exchange architecture, simulation creation, performance optimization, and predictive analysis of the production process conditions. A Digital Twin for a hybrid flow shop from the automotive industry is presented as a case study. In the paper, the Ant Colony Optimization (ACO) algorithm is developed for multi-criteria scheduling problems in order to obtain a production plan without delays and maximum resource utilization. The ACO is compared to the immune algorithm and genetic algorithm. The best schedules are achieved with low computation time for the Digital Twin. By predicting the reliability parameters of the limited resources of the Digital Twin, stable deadlines for the implementation of production tasks are achieved. Mean Time To Failure and Mean Time of Repair are predicted for a real case study of an electric steering gear production line. The presented integration and data exchange between the elements of the smart factory: a Digital Twin, a computing module including an optimization, prediction, and simulation methods fills the gap between theory and practice for Industry 4.0. The paper presents measurable benefits of integration of discrete simulation tools, historical data analysis, and optimization methods.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3