Digital Twin-Based Fault Diagnosis Platform for Final Rolling Temperature in Hot Strip Production

Author:

Desheng Chen1,Jian Shao1,Mingxin Li1,Sensen Xiang1

Affiliation:

1. National Engineering Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The final rolling temperature in hot rolling is an important process parameter for hot-rolled strips and greatly influences their mechanical properties and rolling stability. The diagnosis of final rolling temperature anomalies in hot rolling has always been difficult in industry. A data-driven risk assessment method for detecting final rolling temperature anomalies is proposed. In view of the abnormal setting value for the strip head, a random forest model is established to screen the process parameters with high feature importance, and the isolation forest algorithm is used to evaluate the risk associated with the remaining parameters. In view of the abnormal process curve of the full length of the strip, the Hausdorff distance algorithm is used to eliminate samples with large deviations, and a risk assessment of the curve is carried out using the LCSS algorithm. Aiming to understand the complex coupling relationship between the influencing factors, a method for identifying the causes of anomalies, combining a knowledge graph and a Bayesian network, is established. According to the results of the strip head and the full-length risk assessment model, the occurrence of the corresponding nodes in the Bayesian network is determined, and the root cause of the abnormality is finally output. By combining mechanistic modeling and data modeling techniques, it becomes possible to rapidly, automatically, and accurately detect and analyze final rolling temperature anomalies during the rolling process. When applying the system in the field, when compared to manual analysis by onsite personnel, the accuracy of deducing the causes of anomalies was found to reach 92%.

Funder

Jiangxi Province key research and development project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3