Investigating the Efficiency of a Heat Recovery–Storage System Using Heat Pipes and Phase Change Materials

Author:

Vizitiu Robert Stefan1,Burlacu Andrei1,Abid Chérifa2ORCID,Balan Marius Costel1ORCID,Vizitiu Stefanica Eliza1,Branoaea Marius1,Kaba Nicoleta Elena3

Affiliation:

1. Faculty of Civil Engineering and Building Services, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania

2. Aix-Marseille Université, CNRS, IUSTI, 13453 Marseille, France

3. Faculty of Civil Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania

Abstract

This study presents an experimental and numerical investigation into the efficiency of a two-stage heat recovery–storage system for reducing the thermal energy losses in the industry. The system is designed to recover and store waste thermal energy from residual fluids using heat pipes for recovery and an environmentally friendly phase change material for heat storage. Experimental investigation was conducted using water as the primary agent and varying the temperature between 60 °C, 65 °C, and 70 °C at a constant flow rate of 24 L/min. The secondary agent, also water, was used at an initial temperature of 10 °C and the flow rate was varied between 1 L/min, 2 L/min, and 3 L/min. The results show that the system had a peak efficiency of 78.1% and was able to recover a significant amount of thermal energy. This study demonstrates the potential of this system to reduce the thermal energy losses in the industry and highlight the importance of further research and development in this field, as the industry is responsible for approximately 14% of the total thermal energy losses and finding efficient ways to recover and store waste thermal energy is crucial to achieving sustainable energy consumption.

Funder

Romanian Ministry of Education and Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3