Isolation and Characterization of Microalgae from Diverse Pakistani Habitats: Exploring Third-Generation Biofuel Potential

Author:

Alam Muhammad MaqsoodORCID,Mumtaz Abdul SamadORCID,Russell Megan,Grogger Melanie,Veverka Don,Hallenbeck Patrick C.ORCID

Abstract

Production of microalgae as feedstock for biofuels must deal with a number of challenges including constraints imposed by local conditions. One solution is to use indigenous strains adapted to local climatic conditions. The present report describes the isolation, identification, and characterization of 32 microalgal strains from different ecological habitats: desert freshwater channels, northern region, and saline regions of Pakistan. The effects of temperature on algal growth rates, biomass productivity, and lipid content were determined through growth at 12, 20, and 35 °C for 15 days under 2% CO2 Responses to temperature varied among species with 20 °C being the optimum temperature in general, although, exceptionally, the best overall growth rate was found for strain S29 (0.311 d−1) at 12 °C. In some cases high biomass productivity was observed at 35 °C, and, depending upon the strain, the maximum lipid content was obtained at different temperatures, including 12 °C. Fatty acid methyl ester (FAME) analysis showed that the major fatty acids present were palmitic, stearic, oleic, linoleic, and linolenic. Oleic acid (C18:1) was the predominant fatty acid, with the specific FAME profile varying with strain. Thus, there is a rich diversity of microalgal strains native to Pakistan, some of which, characterized here, could be suitable for biodiesel production or other biotechnological applications.

Funder

U.S. Air Force Academy

Higher Education Commission (HEC) of Pakistan

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3