Effect of Grouser Height on the Tractive Performance of Single Grouser Shoe under Different Soil Moisture Contents in Clay Loam Terrain

Author:

Shaikh Sher AliORCID,Li Yaoming,Zheng Ma,Chandio Farman Ali,Ahmad Fiaz,Tunio Mazhar HussainORCID,Abbas Irfan

Abstract

The grouser height and soil conditions have a considerable influence on the tractive performance of single-track shoe. A soil bin-based research was conducted to assess the influence of grouser height on the tractive performance of single-track shoe at different moisture contents of clay loam soil. Eight moisture contents (7.5, 12, 16.7, 21.5, 26.2, 30.7, 35.8, and 38%) and three grouser heights (45, 55, and 60 mm) were comprised during this study. The tractive performance parameters of (thrust, running resistance, and traction) were determined by penetration test. A sensor-based soil bin was designed for penetration tests, which was included penetration system (AC motor, loadcell, and displacement sensor). The test results revealed that soil cohesion was decreased, and adhesion was increased after 16.7% moisture content. Soil thrust at lateral sides and bottom of grouser were increased before 16.7%, and then decreased for all the three heights but the major decrease was observed at 45 mm height. The motion resistance was linearly decreased, the more reduction was on 45 mm at 38% moisture content. The traction of the single-track shoe was decreased with a rise in moisture content, the maximum decrease was on 45 mm grouser height at 38% moisture content. It could be concluded that an off-road tracked vehicle (crawler combine harvester) with 45 mm grouser height of single-track shoe could be operated towards a moderate moisture content range (16.7–21.5%) under paddy soil for better traction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3