Vertical load distribution strategy of amphibious wheel-track vehicle using neural network and particle swarm optimization

Author:

Gao Xue1ORCID,Tang Yuanjiang1,Xu Haijun1,Xu Xiaojun1,Xu Liyang1,Yan Lihao1

Affiliation:

1. College of Intelligent Science, National University of Defense Technology, Changsha, China

Abstract

Amphibious wheel-track vehicle (AWTV) can change the vertical load of the wheels and the tracks through the active hydro-pneumatic suspension system, which shows significant advantages in terms of maneuverability and road passing ability. However, AWTV is a strong nonlinear system. The irregularity of the road, and coupling characteristics between the vertical load of the wheel-tracks and the terrain will greatly affect the tractive efficiency of the whole vehicle. Therefore, how to effectively distribute the vertical load between the wheel and the track to improve the tractive efficiency of the whole vehicle is still a huge challenge. To address the above problems, based on the neural network (NN) and particle swarm optimization (PSO) algorithm, vertical load distribution strategy of the AWTV is proposed to improve its traction efficiency under different driving road in this paper. Firstly, the coupling dynamics model of AWTV with road and hydraulic system dynamics model of active suspension is established; Secondly, the wheel-track terrain model is built in EDEM-Recurdyn to collect data of vertical load and traction efficiency under the different soils and speeds, and the coupling function is obtained through NN; Then, the optimal vertical load of each axle is optimized through PSO; Finally, the feasibility and effectiveness of the strategy are verified by the simulation analysis under different road conditions and distribution strategies. The simulation and test results demonstrate that the proposed vertical load distribution strategy based on NN-PSO can effectively improve the traction performance of the AWTV in complex terrain environment, and have relatively superior control characteristics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and analysis of center-steering characteristics of variable-configuration wheel-track unmanned ground vehicle based on dynamic resistance;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3