A Comparative Study of AI-Based International Roughness Index (IRI) Prediction Models for Jointed Plain Concrete Pavement (JPCP)

Author:

Wang Qiang,Zhou Mengmeng,Sabri Mohanad Muayad SabriORCID,Huang Jiandong

Abstract

The international roughness index (IRI) can be employed to evaluate the smoothness of pavement. The previously proposed mechanical-empirical pavement design guide (MEPDG), which is used to model the IRI of joint plain concrete pavement (JPCP), has been modified in this study considering its disadvantage of low prediction accuracy. To improve the reliability of the prediction effect of the IRI for JPCP, this study compares the prediction accuracy of the IRI of JPCP by using the machine-learning methods of support vector machine (SVM), decision tree (DT), and random forest (RF), optimized by the hyperparameter of the beetle antennae search (BAS) algorithm. The results from the machine-learning process show that the BAS algorithm can effectively improve the effectiveness of hyperparameter tuning, and then improve the speed and accuracy of optimization. The RF model proved to be the one with the highest prediction accuracy among the above three models. Finally, this study analyzes the importance score of input variables to the IRI, and the results show that the IRI was proportional to all the input variables in this study, and the importance score of initial smoothness (IRII) and total joint faulting cumulated per km (TFAULT) were the highest for the IRI of JPCP.

Publisher

MDPI AG

Subject

General Materials Science

Reference61 articles.

1. Convolutional neural network for automated classification of jointed plain concrete pavement conditions

2. Characterization of curling and warping influence on smoothness of jointed plain concrete pavements;Tian;Proceedings of the International Airfield and Highway Pavements Conference of the Transportation and Development Institute (T and DI) of the American Society of Civil Engineers (ASCE),2021

3. Effect of nano-metakaolinite clay on the performance of cement-based materials at early curing age

4. Structural Analysis of Backfill Highway Subgrade on the Lower Bearing Capacity Foundation Using the Finite Element Method

5. Fatigue prediction of semi-flexible composite mixture based on damage evolution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3