Pavement Roughness Prediction Using Explainable and Supervised Machine Learning Technique for Long-Term Performance

Author:

Sandamal Kelum1,Shashiprabha Sachini1,Muttil Nitin23ORCID,Rathnayake Upaka4ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka

2. Institute for Sustainable Industries & Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia

3. College of Sport, Health and Engineering, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia

4. Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, F91 YW50 Sligo, Ireland

Abstract

Maintaining and rehabilitating pavement in a timely manner is essential for preserving or improving its condition, with roughness being a critical factor. Accurate prediction of road roughness is a vital component of sustainable transportation because it helps transportation planners to develop cost-effective and sustainable pavement maintenance and rehabilitation strategies. Traditional statistical methods can be less effective for this purpose due to their inherent assumptions, rendering them inaccurate. Therefore, this study employed explainable and supervised machine learning algorithms to predict the International Roughness Index (IRI) of asphalt concrete pavement in Sri Lankan arterial roads from 2013 to 2018. Two predictor variables, pavement age and cumulative traffic volume, were used in this study. Five machine learning models, namely Random Forest (RF), Decision Tree (DT), XGBoost (XGB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN), were utilized and compared with the statistical model. The study findings revealed that the machine learning algorithms’ predictions were superior to those of the regression model, with a coefficient of determination (R2) of more than 0.75, except for SVM. Moreover, RF provided the best prediction among the five machine learning algorithms due to its extrapolation and global optimization capabilities. Further, SHapley Additive exPlanations (SHAP) analysis showed that both explanatory variables had positive impacts on IRI progression, with pavement age having the most significant effect. Providing accurate explanations for the decision-making processes in black box models using SHAP analysis increases the trust of road users and domain experts in the predictions generated by machine learning models. Furthermore, this study demonstrates that the use of explainable AI-based methods was more effective than traditional regression analysis in IRI prediction. Overall, using this approach, road authorities can plan for timely maintenance to avoid costly and extensive rehabilitation. Therefore, sustainable transportation can be promoted by extending pavement life and reducing frequent reconstruction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3