A New Method and Application of Full 3D Numerical Simulation for Hydraulic Fracturing Horizontal Fracture

Author:

Xu Bing,Liu Yikun,Wang Yumei,Yang Guang,Yu Qiannan,Wang FengjiaoORCID

Abstract

The numerical simulation of hydraulic fracturing fracture propagation is the core content of hydraulic fracturing design and construction. Its simulation results directly affect the effect of fracturing, and can effectively guide the fracturing construction plan and reduce the construction risk. At present, two-dimensional or quasi-three-dimensional models are mainly used, but most of them are used to simulate the vertical fracture of hydraulic fracturing. There are errors in the application process. In this paper, a three-dimensional mathematical model, including an elastic rock mechanics equation and a material flow continuity equation, is established to simulate horizontal fracture propagation in shallow reservoirs. The emphasis of this paper is to propose a new method for solving equations. The basic idea of the iteration method has been proposed by previous scholars: Firstly, assuming that the initial pressure of each point in the fracture is uniform, the fracture height of each initial point can be obtained by using Equation (20). Using the initial height values, the pressure values at each point of continuous variation are calculated by Equation (16), and then the new fracture height values are obtained by Equation (20). Because of the equal initial pressure, this method leads to too many iterations in the later stages, which makes the calculation more complicated. In this paper, a new Picca iteration method is proposed. The iteration parameters are changed sequentially. Firstly, the distribution value of fracture height is assumed. Then, the pressure distribution value is calculated according to Equation (16). Then, the new distribution value of fracture height is obtained by bringing the obtained pressure distribution value into Equation (20). Then, the new distribution value of the fracture height is calculated according to Equation (16). The pressure distribution value completes an iteration process until the iteration satisfies the convergence condition. In addition, Sneddon’s model is introduced into the hypothesis of fracture height to obtain the maximum fracture height and assume that the initial fracture profile is a parabola. Finally, the proposed method can rapidly improve the convergence rate. Next, on the basis of investigating the solutions of previous equations, the Galerkin finite element method is used to solve the above equations. The new Picard iteration sequence method is applied to solve the height and pressure at different points in the fracture. By calculating the stress intensity factor, we can judge whether the fracture continues to extend or not, and then simulate the full three-dimensional horizontal fracture of the hydraulic fracturing expansion process. The infiltration process of three types of oil reservoirs in Daqing Changyuan oilfield is simulated. The results show that during the initial fracture stage, the radius and height of fractures increase rapidly, and the rate of increase slows down with the increase of construction time. The height and net pressure of each point in the fracture are unequal. The height and net pressure of the fracture in the wellbore reach the maximum, and gradually decrease to the front of the fracture. Compared with conventional fracturing, the fracturing-flooding percolation process has the characteristics of short fracture-making and large vertical percolation distance, which can greatly increase the swept volume of flooding fluid and thus enhance oil recovery. With the increase in the rock modulus of elasticity, the radius of fractures decreases and the height of fractures increases. With the increase in construction displacement, the radius of fractures hardly changes, the height of fractures increases, and the vertical infiltration distance of the fractures increases. It is suggested that the construction displacement should be 4.0 m3/min. In the range of fracturing fluid viscosity in the studied block, with the change of fracturing fluid viscosity, the change of fracture radius and height is not obvious. In order to further increase sweep volume, the fracturing fluid viscosity should be further reduced.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3