Big Data Analysis and Research on Fracturing Construction Parameters of Shale Gas Horizontal Wells—A Case Study of Horizontal Wells in Fuling Demonstration Area, China

Author:

Li Minxuan,Cheng Liang,Liu Dehua,Hu Jiani,Zhang Wei,Li Kuidong,Xiao Jialin,Wang Xiaojun,Zhang Feng

Abstract

With the rapid development of computer science and technology, the Chinese petroleum industry has ushered in the era of big data. In this study, by collecting fracturing data from 303 horizontal wells in the Fuling Shale Gas Demonstration Area in China, a series of big data analysis studies was conducted using Pearson’s correlation coefficient, the unweighted pair group with arithmetic means method, and the graphical plate method to determine which is best. The fracturing parameters were determined through a series of big data analysis studies. The big data analysis process is divided into three main steps. The first is data preprocessing to screen out eligible, high-yielding wells. The second is a fracturing parameter correlation clustering analysis to determine the reasonableness of the parameters. The third is a big data panel method analysis of specific fracturing construction parameters to determine the optimal parameter range. The analyses revealed that the current amount of 100 mesh sand in the Fuling area is unreasonable; further, there are different preferred areas for different fracturing construction parameters. We have combined different fracturing parameter schemes by preferring areas. This analysis process is expected to provide new ideas regarding fracturing scheme design for engineers working on the frontline.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference18 articles.

1. Analysis of the Application of Big Data Technology in Oil and Gas Geological Exploration;Ping;Sci. Technol. Inf.,2019

2. An Introduction to the Application and Challenges of Big Data in the Domestic Oil Exploration and Development Industry;Yang;Sci. Inform.,2019

3. The Practice and Prospect of Big Data Technology in Petrochemical Industry;Tian,2016

4. Parameter Design Method for Re-Fracturing Scheme of Water Injection Block in Oil and Gas Field;Hailin;Well Test,2020

5. Fracture Optimization for Multi-stage Fractured Horizontal Well with Time & stress-sensitive Parameters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3