Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost

Author:

Jiang Meixian1,Feng Jiajia1,Zhou Jian1,Zhou Lin1,Ma Fangzheng1,Wu Guanghua1,Zhang Yuqiu2

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310000, China

2. College of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510000, China

Abstract

As container ports become increasingly important to the global supply chain, a growing number of ports are improving their competencies by consolidating multiple terminal resources internally. In addition, in the context of energy conservation and emission reduction, ports measure competitiveness not only in terms of terminal size, throughput and service level, but also in terms of low energy consumption and low pollution. Therefore, a nonlinear mixed-integer programming model considering the cost of carbon is developed for the multi-terminal berth and quay crane joint robust scheduling problem under uncertain environments to minimize the sum of expectation and variance of total cost under all randomly generated samples. The model considers the water depth and interference of quay cranes, etc. The expected vessel arrival time and the average operational efficiency plus relaxation are used as their actual values when scheduling. Finally, an improved adaptive genetic algorithm is developed by combining the simulated annealing mechanism, and numerical experiments are designed. The results show that the joint berth and quay crane scheduling with uncertainties and a multi-terminal coordination mechanism can effectively reduce the operating cost, including carbon costs and the vessel departure delay rate, and can improve resource utilization. Meanwhile, the scheduling with the multi-terminal coordination mechanism can obtain more significant improvement effects than the scheduling with uncertainties.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3