Abstract
The extraction of parameters of solar photovoltaic generating systems is a difficult problem because of the complex nonlinear variables of current-voltage and power-voltage. In this article, a new implementation of the Gorilla Troops Optimization (GTO) technique for parameter extraction of several PV models is created. GTO is inspired by gorilla group activities in which numerous strategies are imitated, including migration to an unknown area, moving to other gorillas, migration in the direction of a defined site, following the silverback, and competition for adult females. With numerical analyses of the Kyocera KC200GT PV and STM6-40/36 PV modules for the Single Diode (SD) and Double-Diode (DD), the validity of GTO is illustrated. Furthermore, the developed GTO is compared with the outcomes of recent algorithms in 2020, which are Forensic-Based Investigation Optimizer, Equilibrium Optimizer, Jellyfish Search Optimizer, HEAP Optimizer, Marine Predator Algorithm, and an upgraded MPA. GTO’s efficacy and superiority are expressed by calculating the standard deviations of the fitness values, which indicates that the SD and DD models are smaller than 1E−16, and 1E−6, respectively. In addition, validation of GTO for the KC200GT module is demonstrated with diverse irradiations and temperatures where great closeness between the emulated and experimental P-V and I-V curves is achieved under various operating conditions (temperatures and irradiations).
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献