Leaf and Crown Optical Properties of Five Early-, Mid- and Late-Successional Temperate Tree Species and Their Relation to Sapling Light Demand

Author:

Hagemeier Marc,Leuschner Christoph

Abstract

The optical properties of leaves and canopies determine the availability of radiation for photosynthesis and the penetration of light through tree canopies. How leaf absorptance, reflectance and transmittance and radiation transmission through tree canopies change with forest succession is not well understood. We measured the leaf optical properties in the photosynthetically active radiation (PAR) range of five Central European early-, mid- and late-successional temperate broadleaf tree species and studied the minimum light demand of the lowermost shade leaves and of the species’ offspring. Leaf absorptance in the 350–720 nm range varied between c. 70% and 77% in the crown of all five species with only a minor variation from the sun to the shade crown and between species. However, specific absorptance (absorptance normalized by mass per leaf area) increased about threefold from sun to shade leaves with decreasing leaf mass area (LMA) in the late-successional species (Carpinus betulus L., Tilia cordata Mill., Fagus sylvatica L.), while it was generally lower in the early- to mid-successional species (Betula pendula Roth, Quercus petraea (Matt.)Liebl.), where it changed only a little from sun to shade crown. Due to a significant increase in leaf area index, canopy PAR transmittance to the forest floor decreased from early- to late-successional species from ~15% to 1%–3% of incident PAR, linked to a decrease in the minimum light demand of the lowermost shade leaves (from ~20 to 1%–2%) and of the species’ saplings (from ~20 to 3%–4%). The median light intensity on the forest floor under a closed canopy was in all species lower than the saplings’ minimum light demand. We conclude that the optical properties of the sun leaves are very similar among early-, mid- and late-successional tree species, while the shade leaves of these groups differ not only morphologically, but also in terms of the resource investment needed to achieve high PAR absorptance.

Publisher

MDPI AG

Subject

Forestry

Reference36 articles.

1. Fundamentals of radiation and temperature relations;Campbell,1981

2. Plant tissue optics;Vogelmann;Ann. Rev. Plant Physiol. Plant Mol. Biol.,1993

3. Variability in leaf optical properties among 26 species from a broad range of habitats;Knapp;Am. J. Bot.,1998

4. Responses to different quantum flux densities;Bjorkman,1981

5. The Adaptive Geometry of Trees;Horn,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3