Adapting to climate change: responses of fine root traits and C exudation in five tree species with different light-use strategy

Author:

Sell Marili,Rohula-Okunev Gristin,Kupper Priit,Ostonen Ivika

Abstract

Trees that are categorised by their light requirements have similarities in their growth strategies and adaptation mechanisms. We aimed to understand the complex responses of elevated air humidity on whole tree fine root carbon (C) exudation (ExC) and respiration rate, morphology, and functional distribution in species with different light requirements. Three light-demanding (LD) species, Populus × wettsteinii, Betula pendula, and Pinus sylvestris, and two shade-tolerant species, Picea abies and Tilia cordata saplings were grown in growth chambers under moderate and elevated air relative humidity (eRH) at two different inorganic nitrogen sources with constant air temperature and light availability. The proportion of assimilated carbon released by ExC, and respiration decreased at eRH; up to about 3 and 27%, respectively. There was an indication of a trade-off between fine root released C and biomass allocation. The elevated air humidity changed the tree biomass allocation and fine root morphology, and the responses were species-specific. The specific fine root area and absorptive root proportion were positively related to canopy net photosynthesis and leaf nitrogen concentration across tree species. The variation in ExC was explained by the trees’ light-use strategy (p < 0.05), showing higher exudation rates in LD species. The LD species had a higher proportion of pioneer root tips, which related to the enhanced ExC. Our findings highlight the significant role of fine root functional distribution and morphological adaptation in determining rhizosphere C fluxes in changing environmental conditions such as the predicted increase of air humidity in higher latitudes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3