Effects of Anthropogenic and Natural Forcings on the Summer Temperature Variations in East Asia during the 20th Century

Author:

Shim Sungbo,Kim Jinwon,Yum Seong Soo,Lee Hannah,Boo Kyung-On,Byun Young-Hwa

Abstract

The effects of the emissions of anthropogenic greenhouse gases (GHGs), aerosols, and natural forcing on the summer-mean surface air temperature (TAS) in the East Asia (EA) land surface in the 20th century are analyzed using six-member coupled model inter-comparison project 5 (CMIP5) general circulation model (GCM) ensembles from five single-forcing simulations. The simulation with the observed GHG concentrations and aerosol emissions reproduces well the land-mean EA TAS trend characterized by warming periods in the early (1911–1940; P1) and late (1971–2000; P3) 20th century separated by a cooling period (1941–1970; P2). The warming in P1 is mainly due to the natural variability related to GHG increases and the long-term recovery from volcanic activities in late-19th/early-20th century. The cooling in P2 occurs as the combined cooling by anthropogenic aerosols and increased volcanic eruptions in the 1960s exceeds the warming by the GHG increases and the nonlinear interaction term. In P3, the combined warming by GHGs and the interaction term exceeds the cooling by anthropogenic aerosols to result in the warming. The SW forcing is not driving the TAS increase in P1/P3 as the shortwave (SW) forcing is heavily affected by the increased cloudiness and the longwave (LW) forcing dominates the SW forcing. The LW forcing to TAS cannot be separated from the LW response to TAS, preventing further analyses. The interaction among these forcing affects TAS via largely modifying the atmospheric water cycle, especially in P2 and P3. Key forcing terms on TAS such as the temperature advection related to large-scale circulation changes cannot be analyzed due to the lack of model data.

Funder

National Institute of Meteorological Sciences

Korea Meteorological Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3