Author:
Su Qin,Dong Buwen,Tian Fangxing,Klingaman Nicholas P.
Abstract
AbstractThe frequency and duration of observed concurrent hot and dry events (HDEs) over China during the growing season (April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China (SEC), northern China (NC), and northeastern China (NEC). The frequency of HDEs averaged over China in the present day (PD, 1994–2011) is double that in the early period (EP, 1964–81); the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model (MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes, suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas (GHG) concentrations dominates the simulated decadal changes, increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol (AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230, https://doi.org/10.1126/science.245.4923.1227.
2. Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–657.
3. Chen, W., and B. W. Dong, 2019: Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 52, 3643–3660, https://doi.org/10.1007/s00382-018-4342-9.
4. Dong, B. W., R. T. Sutton, L. Shaffrey, and N. P. Klingaman, 2017: Attribution of forced decadal climate change in coupled and uncoupled ocean–atmosphere model experiments. J. Climate, 30(16), 6203–6223, https://doi.org/10.1175/JCLI-D-16-0578.1.
5. Dong, B. W., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: roles of aerosol-radiation and aerosol-cloud interactions. Climate Dyn., 53, 3235–3256, https://doi.org/10.1007/s00382-019-04698-0.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献