Abstract
The assimilation impact of wind data from aircraft measurements (AMDAR), surface synoptic observations (SYNOP) and 3D numerical weather prediction (NWP) mesoscale model, on short-range numerical weather forecasting (up to 12 h) and on the assimilation system, using the one-dimensional fog forecasting model COBEL-ISBA (Code de Brouillard à l’Échelle Locale-Interactions Soil Biosphere Atmosphere), is studied in the present work. The wind data are extracted at Nouasseur airport, Casablanca, Morocco, over a winter period from the national meteorological database. It is the first time that wind profiles (up to 1300 m) are assimilated in the framework of a single-column model. The impact is assessed by performing NWP experiments with data denial tests, configured to be close to the operational settings. The assimilation system estimates the flow-dependent background covariances for each run of the model and takes the cross-correlations between temperature, humidity and wind components into account. When assimilated into COBEL-ISBA with an hourly update cycle, the wind field has a positive impact on temperature and specific humidity analysis and forecasts accuracy. Thus, a superior fit of the analysis background fields to observations is found when assimilating AMDAR without NWP wind data. The latter has shown a detrimental impact in all experiments. Besides, wind assimilation gave a clear improvement to short-range forecasts of near-surface thermodynamical parameters. Although, assimilation of SYNOP and AMDAR wind measurements slightly improves the probability of detection of fog but also increases the false alarms ratio by a lower magnitude.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献