Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law

Author:

Xu HaoranORCID,Chen LingenORCID,Ge Yanlin,Feng Huijun

Abstract

This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated temperature ratio x of working fluid and volume compression ratio λ as optimization variables, and used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives, namely, dimensionless shaft power output P¯s, braking thermal efficiency ηs, dimensionless efficient power E¯p and dimensionless power density P¯d. The optimal solutions of four-, three-, two-, and single-objective optimizations are reached by selecting the minimum deviation indexes D with the three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization results show that the D reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the Shannon Entropy strategy for four-objective optimization, while the Ds reached for single-objective optimizations at maximum P¯s, ηs, E¯p, and P¯d conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which are all bigger than 0.1683. This indicates that multi-objective optimization results are better when choosing appropriate decision-making strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference90 articles.

1. Efficiency of a Carnot engine at maximum power output;Curzon;Am. J. Phys.,1975

2. Andresen, B. Finite-Time Thermodynamics, 1983.

3. Endoreversible thermodynamics;Hoffmann;J. Non Equilib. Thermodyn.,1997

4. Finite time thermodynamic optimization or entropy generation minimization of energy systems;Chen;J. Non Equilib. Thermodyn.,1999

5. Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine;Zhang;Eur. Phys. J. B,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3