Maximum ecological function performance for a three-reservoir endoreversible chemical pump

Author:

Chen Lingen123,Shi Shuangshuang123,Feng Huijun123,Ge Yanlin123

Affiliation:

1. Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology , Wuhan 430205 , P. R. China

2. Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment , Wuhan 430205 , P. R. China

3. School of Mechanical & Electrical Engineering , Wuhan Institute of Technology , Wuhan 430205 , P. R. China

Abstract

Abstract Endoreversible chemical pump (ECP) is a theoretical model of electrochemical, photochemical, solid-state apparatus and mass exchangers. ECP can be classified as two-, three- and four-mass-reservoir devices. The usual performance indicators for ECPs are energy pumping rate (EPR) and coefficient of performance (COP). Energy-based ecological function objective (EFO) is introduced to performance optimization of three-reservoir ECP. Optimization relationships between EFO and COP with linear and diffusive mass transfer laws (MTLs) are deduced. Numerical examples are provided, and influences of cycle parameters and MTLs on optimal EFO performances are analyzed. For linear MTL, compared performances at maximum EFO point and point where dimensionless EPR is 0.016, COP increases 14.4% and entropy generation rate (EGR) drops 52% with only 30% loss of EPR. For diffusive MTL, compared performances at maximum dimensionless EFO point and point where dimensionless EPR is 0.01, COP increases 11.3% and EGR drops 46.9% with only 30% loss of EPR. It demonstrates that EFO is a trade-off between EPR and dissipation of EPR, which is beneficial to utilize energy effectively. With the same chemical potentials of three reservoirs, the maximum dimensionless EFO and the corresponding COP with linear MTL are bigger than those with diffusive MTL.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3