Reducing Afterpulsing in InGaAs(P) Single-Photon Detectors with Hybrid Quenching

Author:

Liu JunliangORCID,Xu Yining,Wang Zheng,Li YongfuORCID,Gu Yi,Liu Zhaojun,Zhao Xian

Abstract

High detection efficiency appears to be associated with a high afterpulse probability for InP-based single-photon avalanche diodes. In this paper, we present a new hybrid quenching technique that combines the advantages of both fast active quenching and high-frequency gated-passive quenching, with the aim of suppressing higher-order afterpulsing effects. Our results showed that the hybrid quenching method contributed to a 10% to 85% reduction of afterpulses with a gate-free detection efficiency of 4% to 10% at 1.06 μm, with 40 ns dead time, compared with the counter-based hold-off method. With the improvement of the afterpulsing performance of high-frequency gated single-photon detectors, especially at relatively high average detection efficiencies with wide gate widths, the proposed method enables their use as high-performance free-running detectors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3