Fast, Efficient Tailoring Growth of Nanocrystalline Diamond Films by Fine-Tuning of Gas-Phase Composition Using Microwave Plasma Chemical Vapor Deposition

Author:

Tang Chunjiu12ORCID,Fernandes Antonio J. S.2ORCID,Facao Margarida2ORCID,Carvalho Alexandre F.2,Chen Weixia1,Hou Haihong1,Costa Florinda M.2ORCID

Affiliation:

1. School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China

2. Department of Physics, I3N (Institute for Nanostructures, Nanomodelling and Nanofabrication), University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

Nanocrystalline diamond (NCD) films are attractive for many applications due to their smooth surfaces while holding the properties of diamond. However, their growth rate is generally low using common Ar/CH4 with or without H2 chemistry and strongly dependent on the overall growth conditions using microwave plasma chemical vapor deposition (MPCVD). In this work, incorporating a small amount of N2 and O2 additives into CH4/H2 chemistry offered a much higher growth rate of NCD films, which is promising for some applications. Several novel series of experiments were designed and conducted to tailor the growth features of NCD films by fine-tuning of the gas-phase compositions with different amounts of nitrogen and oxygen addition into CH4/H2 gas mixtures. The influence of growth parameters, such as the absolute amount and their relative ratios of O2 and N2 additives; substrate temperature, which was adjusted by two ways and inferred by simulation; and microwave power on NCD formation, was investigated. Short and long deposition runs were carried out to study surface structural evolution with time under identical growth conditions. The morphology, crystalline and optical quality, orientation, and texture of the NCD samples were characterized and analyzed. A variety of NCD films of high average growth rates ranging from 2.1 μm/h up to 6.7 μm/h were successfully achieved by slightly adjusting the O2/CH4 amounts from 6.25% to 18.75%, while that of N2 was kept constant. The results clearly show that the beneficial use of fine-tuning of gas-phase compositions offers a simple and effective way to tailor the growth characteristics and physical properties of NCD films for optimizing the growth conditions to envisage some specific applications.

Funder

National Science Foundation (NSF) of China

I3N Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3