Deforestation for Agriculture Temporarily Improved Soil Quality and Soil Organic Carbon Stocks

Author:

Wang Bo,Wang Guibin,Myo Sai Tay ZarORCID,Li Yong,Xu Cheng,Lin Zeyang,Qian Zhuangzhuang,Tang Luozhong

Abstract

Deforestation for agricultural development or extension is a common land-use problem that may cause a series of changes in the ecological environment and soil carbon stock in planting systems. However, the response of soil physical, chemical properties and carbon stocks in agricultural systems in the initial period after deforestation have not been thoroughly examined, especially in the subsoil. We investigated the variations in the soil physicochemical properties and organic carbon stocks to a depth of 100 cm in a poplar (Populus deltoides cv. 35) plantation, a summer maize (Zea mays L.) followed by winter wheat (Triticum aestivum L.) field after 1 year of deforestation of a poplar plantation, and a wheat–maize rotation field used for decades. The soil bulk density and pH decreased, and the soil total nitrogen (TN), total phosphorus, and total potassium contents increased considerably. The soil organic carbon (SOC) content and stocks (to 100 cm) increased by 32.8% and 20.1%, respectively. The soil TN content was significantly (p < 0.001) positively correlated with the SOC content, and the C:N ratio increased for the field following deforestation. Furthermore, the nitrogen in the poplar plantation and the field following deforestation was limited. We recommend increasing the amount of nitrogen fertilizer following deforestation to improve fertility and this will be beneficial to SOC storage.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Forestry

Reference63 articles.

1. Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change;Watson,2000

2. Climate Change 2007: The Physical Science Basis. Contribution of Working Groups I, the Fourth Assessment Report of IPCC,2007

3. Soil carbon sequestration to mitigate climate change

4. Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems

5. Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3