Rainfall Physical Partitioning and Chemical Characteristics in Evergreen Coniferous and Deciduous Broadleaved Forest Stands in a High Nitrogen Deposition Region, China

Author:

Yang Tao,Li Yong,Ouyang Xueying,Wang Bo,Ge Xiaomin,Tang Luozhong

Abstract

Atmospheric rainfall is one of the major sources of water and nutrient inputs in forest stands. Understanding the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands is critical for forest management and monitoring regional atmospheric pollution, especially in high N deposition regions. In this study, annual rainfall collections were implemented to investigate rainfall partitioning, element concentrations, and element fluxes in an evergreen coniferous forest (ECF) stand, a deciduous broadleaved forest (DBF) stand, and open area field (OAF) in a high N deposition region, China. Rainfall in the ECF and DBF was partitioned into throughfall, stemflow, and interception loss, which accounted for 74.7%, 4.8%, and 20.5% of the gross annual rainfall in the ECF stand, respectively; and 79.8%, 5.8%, and 14.4% of the gross annual rainfall in the DBF stand, respectively. Rainfall physical partitioning chemical characteristics varied with forest stand type. The amount of throughfall and stemflow in the ECF stand was lower than that in the DBF stand; the interception loss in the ECF stand was higher than that in the DBF stand. Element concentrations and element fluxes increased as rainfall passed through forest canopies in the high N deposition region. The stemflow pH in the ECF was lower than that in the DBF stand, the concentrations of NO3−-N, Cl−, and SO42−-S in stemflow in the ECF stand were higher than those in the DBF stand, and the concentrations of K+, Na+, Ca2+, Mg2+ and NH4+-N in stemflow in the ECF stand were lower than those in the DBF stand. The inorganic N deposition was 52.7 kg ha−1 year−1 for the OAF, 110.9 kg ha−1 year−1 for the ECF stand, and 99.6 kg ha−1 year−1 for the DBF stand; stemflow accounted for 15.1% and 19.2% of inorganic N deposition in the ECF stand and the DBF stand, respectively. In the present study, given the similar rainfall characteristics and meteorological conditions, the differences in rainfall partitioning and chemical characteristics between the ECF stand and the DBF stand could largely be attributed to their differences in stand characteristics. The results of the study will facilitate a greater understanding of the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands in a high nitrogen deposition region.

Funder

National Key Research and Development Program of China

Biodiversity Protection Project of Ministry of Ecology and Environment, China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3