Slope Stability and Effectiveness of Treatment Measures during Earthquake

Author:

Zhou Linlu1,Su Lei1,Wang Zhuang1,Zhu Dongchun2,Shi Wei1,Ling Xianzhang1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

2. Xi’an China Highway Geotechnical Engineering Co., Ltd., Xi’an 710075, China

Abstract

Slopes are prone to instability during earthquakes, which will cause geological disasters such as landslides and pose a great threat to people’s lives and property. Therefore, it is necessary to analyze the stability of slopes and the effectiveness of treatment measures during earthquakes. In this study, an actual slope in the creeping slide stage was selected and located in an area where earthquakes occur frequently. Once the slope experiences instability, it will produce great damage. Therefore, a finite difference program, Fast Lagrangian Analysis of Continua in Two Dimensions (FLAC2D), was employed in the numerical simulation to explore the stability of the slope before and after treatment under earthquake action. Different from previous studies, this study explores the effectiveness of various treatment measures on slope stability during earthquake. The computed results show that the stability of the slope is greatly influenced by earthquakes, and the slope displacement under seismic conditions is far larger than that under natural conditions. Three treatment measures, including excavation, anti-slide piles, and anchor cables, can significantly reduce slope displacement and the internal force on anti-slide piles, and improve the stability of a slope during an earthquake. This will provide a valuable reference for the strengthening strategies of unstable slopes. The analysis technique as well as the derived insights are of significance for slope stability and the effectiveness of treatment measures.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Xi’an China Highway Geotechnical Engineering Co., Ltd

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3