Affiliation:
1. Beijing Key Laboratory of Precision Forestry, Beijing Forestry University, Beijing 100083, China
2. Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA
Abstract
Optimizing the connectivity-carbon sequestration coupling coordination of forest and grassland ecological spaces (F&GES) is a crucial measure to enhance carbon sequestration effectively in mining areas. However, the prevailing strategies for optimizing F&GES often overlook the connectivity-carbon sequestration coupling coordination of the network. Therefore, this study aimed to propose a novel restoration plan to improve the connectivity-carbon sequestration coupling coordination of existing networks. Taking a typical mining area in northwestern China (Eyu County) as an example, we extracted the existing F&GES based on remote sensing ecological indicators and ecological risk assessments. Subsequently, we optimized the network using the connectivity-carbon sequestration coupling coordination degree (CSCCD) model from the perspective of connectivity-carbon sequestration coupling coordination, proposed potential alternative optimization schemes, and evaluated the optimization effects. The results showed that the range of Eyu County’s F&GES structure had been determined. Ecological source sites with better carbon sequestration effects were primarily distributed in the central and northeastern parts of Eyu County. After optimization, the network added 26 ecological patches, and the added area reached 641.57 km2. Furthermore, the connectivity robustness, edge restoration robustness, and node restoration robustness of the optimized network were significantly improved, and the carbon sequestration effect of the forest and grassland ecological space was increased by 6.78%. The contribution rate of ecological source sites was 97.66%, and that of ecological corridors was 2.34%. The CSCCD model proposed in this study can effectively improve the carbon sequestration effect in mining areas, promote carbon neutrality, and save network optimization time while improving efficiency. This restoration strategy is also applicable to forest and grassland ecosystem management and optimization of ecological spaces in other mining areas, which has positive implications for promoting ecological civilization construction and sustainable development.
Funder
National Natural Science Foundation of China Project
Youth Science Foundation of National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献