Study on Forest and Grassland Ecological Space Structure in Eyu Mining Area and Potential Alternatives for Enhancing Carbon Sequestration

Author:

Wang Ge1,Yue Depeng1,Yu Qiang1ORCID,Yang Di2ORCID,Xu Chenglong1,Wang Fei1

Affiliation:

1. Beijing Key Laboratory of Precision Forestry, Beijing Forestry University, Beijing 100083, China

2. Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA

Abstract

Optimizing the connectivity-carbon sequestration coupling coordination of forest and grassland ecological spaces (F&GES) is a crucial measure to enhance carbon sequestration effectively in mining areas. However, the prevailing strategies for optimizing F&GES often overlook the connectivity-carbon sequestration coupling coordination of the network. Therefore, this study aimed to propose a novel restoration plan to improve the connectivity-carbon sequestration coupling coordination of existing networks. Taking a typical mining area in northwestern China (Eyu County) as an example, we extracted the existing F&GES based on remote sensing ecological indicators and ecological risk assessments. Subsequently, we optimized the network using the connectivity-carbon sequestration coupling coordination degree (CSCCD) model from the perspective of connectivity-carbon sequestration coupling coordination, proposed potential alternative optimization schemes, and evaluated the optimization effects. The results showed that the range of Eyu County’s F&GES structure had been determined. Ecological source sites with better carbon sequestration effects were primarily distributed in the central and northeastern parts of Eyu County. After optimization, the network added 26 ecological patches, and the added area reached 641.57 km2. Furthermore, the connectivity robustness, edge restoration robustness, and node restoration robustness of the optimized network were significantly improved, and the carbon sequestration effect of the forest and grassland ecological space was increased by 6.78%. The contribution rate of ecological source sites was 97.66%, and that of ecological corridors was 2.34%. The CSCCD model proposed in this study can effectively improve the carbon sequestration effect in mining areas, promote carbon neutrality, and save network optimization time while improving efficiency. This restoration strategy is also applicable to forest and grassland ecosystem management and optimization of ecological spaces in other mining areas, which has positive implications for promoting ecological civilization construction and sustainable development.

Funder

National Natural Science Foundation of China Project

Youth Science Foundation of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3