Degradation Mechanism of Coal Gangue Concrete Suffering from Sulfate Attack in the Mine Environment

Author:

Yu Linli12ORCID,Xia Junwu12ORCID,Gu Jixin1,Zhang Shuai1,Zhou Yu1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangsu Collaborative Innovation Center of Building Energy-Saving and Construction Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China

Abstract

Recycling coal gangue as aggregate to produce concrete in situ is the most effective way to solve the problem of deposited coal gangue in mines. Nevertheless, the mine environment underground is rich in sulfate ions, posing a threat to the durability of coal gangue concrete (CGC). Hence, the degradation process of sulfate-attacked CGC is investigated. A series of tests is performed to evaluate its variation law of mass, dynamic elastic modulus, compressive strength and sulfate ion distribution. Meanwhile, the microstructure and phases of sulfate-attacked CGC are identified by scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the residual compressive strength ratio of CGC is higher than that of normal concrete after a 240 d sulfate attack, implying a superior sulfate resistance for CGC. Additionally, the higher the sulfate concentration, the more severe the degradation. Except for the secondary hydration of CGC itself, the diffused sulfate ions also react with Ca(OH)2, forming gypsum and ettringite; this plays a positive role in filling the pores at the early stage, whereas, at the later stage, the generated micro-cracks are detrimental to the performance of CGC. In particular, the proposed sulfate corrosion model elucidates the degradation mechanism of CGC exposed to a sulfate-rich environment.

Funder

National Natural Science Foundation of China

Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3