Application of the Improved POA-RF Model in Predicting the Strength and Energy Absorption Property of a Novel Aseismic Rubber-Concrete Material

Author:

Mei Xiancheng12,Cui Zhen12ORCID,Sheng Qian12,Zhou Jian3ORCID,Li Chuanqi4

Affiliation:

1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

4. Laboratory 3SR, CNRS UMR 5521, Grenoble Alpes University, 38000 Grenoble, France

Abstract

The application of aseismic materials in foundation engineering structures is an inevitable trend and research hotspot of earthquake resistance, especially in tunnel engineering. In this study, the pelican optimization algorithm (POA) is improved using the Latin hypercube sampling (LHS) method and the Chaotic mapping (CM) method to optimize the random forest (RF) model for predicting the aseismic performance of a novel aseismic rubber-concrete material. Seventy uniaxial compression tests and seventy impact tests were conducted to quantify this aseismic material performance, i.e., strength and energy absorption properties and four other artificial intelligence models were generated to compare the predictive performance with the proposed hybrid RF models. The performance evaluation results showed that the LHSPOA-RF model has the best prediction performance among all the models for predicting the strength and energy absorption property of this novel aseismic concrete material in both the training and testing phases (R2: 0.9800 and 0.9108, VAF: 98.0005% and 91.0880%, RMSE: 0.7057 and 1.9128, MAE: 0.4461 and 0.7364; R2: 0.9857 and 0.9065, VAF: 98.5909% and 91.3652%, RMSE: 0.5781 and 1.8814, MAE: 0.4233 and 0.9913). In addition, the sensitive analysis results indicated that the rubber and cement are the most important parameters for predicting the strength and energy absorption properties, respectively. Accordingly, the improved POA-RF model not only is proven as an effective method to predict the strength and energy absorption properties of aseismic materials, but also this hybrid model provides a new idea for assessing other aseismic performances in the field of tunnel engineering.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

CRSRI Open Research Program

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3