BrCWM Mutation Disrupted Leaf Flattening in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

Author:

Wu Yanji1,Xin Yue1,Zou Jiaqi1,Huang Shengnan1,Wang Che1,Feng Hui1ORCID

Affiliation:

1. Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110065, China

Abstract

Leaf flattening plays a vital role in the establishment of plant architecture, which is closely related to plant photosynthesis and, thus, influences the product yield and quality of Chinese cabbage. In this study, we used the doubled haploid line ‘FT’ of Chinese cabbage as the wild type for ethyl methanesulfonate (EMS) mutagenesis and obtained a mutant cwm with stably inherited compact and wrinkled leaves. Genetic analysis revealed that the mutated trait was controlled by a single recessive nuclear gene, Brcwm. Brcwm was preliminarily mapped to chromosome A07 based on bulked segregant RNA sequencing (BSR-seq) and fine-mapped to a 205.66 kb region containing 39 genes between Indel12 and Indel21 using SSR and Indel analysis. According to the whole-genome re-sequencing results, we found that there was only one nonsynonymous single nucleotide polymorphism (SNP) (C to T) within the target interval on exon 4 of BraA07g021970.3C, which resulted in a proline to serine amino acid substitution. The mutated trait co-segregated with the SNP. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that BraA07g021970.3C expression was dramatically higher in ‘FT’ leaves than that in cwm leaves. BraA07g021970.3C is homologous to AT3G55000 encoding a protein related to cortical microtubule organization. A similar phenotype of dwarfism and wrinkled leaves was observed in the recessive homozygous mutant cwm-f1 of AT3G55000, and its T3 transgenic lines were restored to the Arabidopsis wild-type phenotype through ectopic overexpression of BraA07g021970.3C. These results verified that BraA07g021970.3C was the target gene essential for leaf flattening in Chinese cabbage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3