Abstract
Abstract
Background
Studies of leaf shape development and plant stature have made important contributions to the fields of plant breeding and developmental biology. The optimization of leaf morphology and plant height to improve lodging resistance and photosynthetic efficiency, increase planting density and yield, and facilitate mechanized harvesting is a desirable goal in Brassica napus.
Results
Here, we investigated a B. napus germplasm resource exhibiting up-curled leaves and a semi-dwarf stature. In progeny populations derived from NJAU5737 and Zhongshuang 11 (ZS11), we found that the up-curled leaf trait was controlled by a dominant locus, BnUC2. We then fine mapped the BnUC2 locus onto an 83.19-kb interval on chromosome A05 using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. We further determined that BnUC2 was a major plant height QTL that explained approximately 70% of the phenotypic variation in two BC5F3 family populations derived from NJAU5737 and ZS11. This result implies that BnUC2 was also responsible for the observed semi-dwarf stature. The fine mapping interval of BnUC2 contained five genes, two of which, BnaA05g16700D (BnaA05.IAA2) and BnaA05g16720D, were revealed by comparative sequencing to be mutated in NJAU5737. This result suggests that the candidate gene mutation (BnaA05g16700D, encoding Aux/IAA2 proteins) in the conserved Degron motif GWPPV (P63S) was responsible for the BnUC2 locus. In addition, investigation of agronomic traits in a segregated population indicated that plant height, main inflorescence length, and branching height were significantly reduced by BnUC2, whereas yield was not significantly altered. The determination of the photosynthetic efficiency showed that the BnUC2 locus was beneficial to improve the photosynthetic efficiency. Our findings may provide an effective foundation for plant type breeding in B. napus.
Conclusions
Using SNP and SSR markers, a dominant locus (BnUC2) related to up-curled leaves and semi-dwarf stature in B. napus has been fine mapped onto an 83.19-kb interval of chromosome A05 containing five genes. The BnaA05.IAA2 is inferred to be the candidate gene responsible for the BnUC2 locus.
Funder
National Key Research and Development Plan
National Natural Science Foundation of China
open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement
Publisher
Springer Science and Business Media LLC
Reference80 articles.
1. Lang Y, Zhang Z, Gu X, Yang J, Zhu Q. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) I. leaf orientation, canopy structure and light distribution. Acta Agron Sin. 2004;30(8):806–10.
2. Hedden P. The genes of the green revolution. Trends Genet. 2003;19(1):5–9.
3. Fei D, Guan C, Jiao Y. Molecular mechanisms of leaf morphogenesis. Mol Plant. 2018;11(9):1117–34.
4. Conklin PA, Josh S, Shujie L, SM J. On the mechanisms of development in monocot and eudicot leaves. New Phytol. 2019;221(2):706–24.
5. Hudson A, Waites R. Early events in leaf development. Semin Cell Dev Biol. 1998;9(2):207–11.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献