Sinapic Acid Co-Amorphous Systems with Amino Acids for Improved Solubility and Antioxidant Activity

Author:

Garbiec Ewa1ORCID,Rosiak Natalia1ORCID,Tykarska Ewa2ORCID,Zalewski Przemysław1ORCID,Cielecka-Piontek Judyta1ORCID

Affiliation:

1. Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland

2. Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland

Abstract

The objective of this study was to obtain co-amorphous systems of poorly soluble sinapic acid using amino acids as co-formers. In order to assess the probability of the interaction of amino acids, namely, arginine, histidine, lysine, tryptophan, and proline, selected as co-formers in the amorphization of sinapic acid, in silico studies were carried out. Sinapic acid systems with amino acids in a molar ratio of 1:1 and 1:2 were obtained using ball milling, solvent evaporation, and freeze drying techniques. X-ray powder diffraction results confirmed the loss of crystallinity of sinapic acid and lysine, regardless of the amorphization technique used, while remaining co-formers produced mixed results. Fourier-transform infrared spectroscopy analyses revealed that the co-amorphous sinapic acid systems were stabilized through the creation of intermolecular interactions, particularly hydrogen bonds, and the potential formation of salt. Lysine was selected as the most appropriate co-former to obtain co-amorphous systems of sinapic acid, which inhibited the recrystallization of sinapic acid for a period of six weeks in 30 °C and 50 °C. Obtained co-amorphous systems demonstrated an enhancement in dissolution rate over pure sinapic acid. A solubility study revealed a 12.9-fold improvement in sinapic acid solubility after introducing it into the co-amorphous systems. Moreover, a 2.2-fold and 1.3-fold improvement in antioxidant activity of sinapic acid was observed with respect to the ability to neutralize the 2,2-diphenyl-1-picrylhydrazyl radical and to reduce copper ions, respectively.

Funder

National Science Centre Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3