Genome-Wide Identification and Expression Analysis of Cysteine-Rich Polycomb-like Protein (CPP) Gene Family in Tomato
-
Published:2023-03-17
Issue:6
Volume:24
Page:5762
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Sun Yaoguang1ORCID,
Jia Xinyi1,
Chen Dexia1,
Fu Qingjun1,
Chen Jinxiu1,
Yang Wenhui1,
Yang Huanhuan1,
Xu Xiangyang1
Affiliation:
1. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
Abstract
The cysteine-rich polycomb-like protein (CPP) gene family is a class of transcription factors containing conserved cysteine-rich CRC structural domains that is involved in the regulation of plant growth and stress tolerance to adversity. Relative to other gene families, the CPP gene family has not received sufficient attention. In this study, six SlCPPs were identified for the first time using the most recent genome-wide identification data of tomato. Subsequently, a phylogenetic analysis classified SlCPPs into four subfamilies. The analysis of cis-acting elements in the promoter indicates that SlCPPs are involved in plant growth and development and also stress response. We present for the first time the prediction of the tertiary structure of these SlCPPs proteins using the AlphaFold2 artificial intelligence system developed by the DeepMind team. Transcriptome data analysis showed that SlCPPs were differentially expressed in different tissues. Gene expression profiling showed that all SlCPPs except SlCPP5 were up-regulated under drought stress; SlCPP2, SlCPP3 and SlCPP4 were up-regulated under cold stress; SlCPP2 and SlCPP5 were up-regulated under salt stress; all SlCPPs were up-regulated under inoculation with Cladosporium fulvum; and SlCPP1, SlCPP3, and SlCPP4 were up-regulated under inoculation with Stemphylium lycopersici. We performed a virus-induced gene silencing experiment on SlCPP3, and the results indicated that SlCPP3 was involved in the response to drought stress. Finally, we predicted the interaction network of the key gene SlCPP3, and there was an interaction relationship between SlCPP3 and 10 genes, such as RBR1 and MSI1. The positive outcome showed that SlCPPs responded to environmental stress. This study provides a theoretical and empirical basis for the response mechanisms of tomato in abiotic stresses.
Funder
Key Research and Development Program of Heilongjiang Province
National Natural Science Foundation of China
China Agriculture Research System
Breeding of high-quality and disease-resistant new varieties of bulk vegetables
Heilongjiang Natural Science Foundation of China
Fellowship of China Postdoctoral Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献