Differential Transcriptome Responses in Human THP-1 Macrophages Following Exposure to T98G and LN-18 Human Glioblastoma Secretions: A Simplified Bioinformatics Approach to Understanding Patient-Glioma-Specific Effects on Tumor-Associated Macrophages

Author:

Scobie Micaela R.12ORCID,Abood Abdullah3ORCID,Rice Charles D.2ORCID

Affiliation:

1. Durham Veterans Health Administration Medical Center, Durham, NC 27705, USA

2. Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

3. Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA

Abstract

A common theme in glioma disease progression is robust infiltration of immune cells within the tumor microenvironment, resulting in a state of chronic inflammation. This disease state is characterized by an abundance of CD68+ microglia and CD163+ bone marrow-derived macrophages with the greater the percentage of CD163+ cells, the poorer the prognosis. These macrophages are “cold,” in that their phenotype is of an alternatively activated state (M0-M2-like) supporting tumor growth rather than being engaged with classically activated, pro-inflammatory, and anti-tumor activities, referred to as “hot”, or M1-like. Herein, we have developed an in vitro approach that uses two human glioma cell lines, T98G and LN-18, which exhibit a variety of differing mutations and characteristics, to demonstrate their disparate effects on differentiated THP-1 macrophages. We first developed an approach to differentiating THP-1 monocytes to macrophages with mixed transcriptomic phenotypes we regard as M0-like macrophages. We then found that supernatants from the two different glioma cell lines induced different gene expression profiles in THP-1 macrophages, suggesting that from patient to patient, gliomas may be considered as different diseases. This study suggests that in addition to standard glioma treatment modalities, transcriptome profiling of the effects of cultured glioma cells on a standard THP-1 macrophage in vitro model may lead to future druggable targets that aim to reprogram tumor-associated macrophages towards an anti-tumor phenotype.

Funder

Self-Regional Healthcare Human Genetics Research Program, Greenwood Genetics Center, Greenwood SC USA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3