Resmetirom Ameliorates NASH-Model Mice by Suppressing STAT3 and NF-κB Signaling Pathways in an RGS5-Dependent Manner

Author:

Wang Xiaojing1ORCID,Wang Liangjing23,Geng Lin1,Tanaka Naoki456ORCID,Ye Bin1

Affiliation:

1. Department of Gastroenterology, Lishui Hospital of Zhejiang University/The Central Hospital of Lishui, Lishui 323000, China

2. Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China

3. Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China

4. Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan

5. International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan

6. Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan

Abstract

Resmetirom, a liver-directed, orally active agonist of THR-β, could play a favorable role in treating NASH, but little is known about the underlying mechanism. A NASH cell model was established to test the preventive effect of resmetirom on this disease in vitro. RNA-seq was used for screening, and rescue experiments were performed to validate the target gene of the drug. A NASH mouse model was used to further elucidate the role and the underlying mechanism of resmetirom. Resmetirom effectively eliminated lipid accumulation and decreased triglyceride (TG) levels. In addition, repressed RGS5 in the NASH model could be recovered by resmetirom treatment. The silencing of RGS5 effectively impaired the role of resmetirom. In the NASH mouse model, obvious gray hepatization, liver fibrosis and inflammation, and increased macrophage infiltration were observed in liver tissues, while resmetirom almost returned them to normal conditions as observed in the control group. Pathological experimental data also confirmed that resmetirom has great potential in NASH treatment. Finally, RGS5 expression was suppressed in the NASH mouse model, but it was upregulated by resmetirom treatment, while the STAT3 and NF-κB signaling pathways were activated in NASH but inhibited by the agent. Resmetirom could improve NASH by recovering RGS5 expression and subsequently inactivating the STAT3 and NF-κB signaling pathways.

Funder

Science and Technology Bureau of Lishui

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3